Escherichia coli ST131: a multidrug-resistant clone primed for global domination

نویسندگان

  • Johann D D Pitout
  • Rebekah DeVinney
چکیده

A single extra-intestinal pathogenic Escherichia coli (ExPEC) clone, named sequence type (ST) 131, is responsible for millions of global antimicrobial-resistant (AMR) infections annually. Population genetics indicate that ST131 consists of different clades (i.e. A, B, and C); however, clade C is the most dominant globally. A ST131 subclade, named C1-M27, is emerging in Japan and has been responsible for the recent increase in AMR ExPEC in that country. The sequential acquisition of several virulence and AMR genes associated with mobile genetic elements during the 1960s to 1980s primed clade C (and its subclades C1 and C2) for success in the 1990s to 2000s. IncF plasmids with F1:A2:B20 and F2:A1:B replicons have shaped the evolution of the C1 and C2 subclades. It is possible that ST131 is a host generalist with different accessory gene profiles. Compensatory mutations within the core genome of this clone have counterbalanced the fitness cost associated with IncF plasmids. ST131 clade C had dramatically changed the population structure of ExPEC, but it still remains unclear which features of this clade resulted in one of the most unprecedented AMR successes of the 2000s.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global dissemination of a multidrug resistant Escherichia coli clone.

Escherichia coli sequence type 131 (ST131) is a globally disseminated, multidrug resistant (MDR) clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with several factors, including resistance to fluoroquinolones, high virulence gene content, the possession of the type 1 fimbriae Fi...

متن کامل

Erratum for Ben Zakour et al., Sequential Acquisition of Virulence and Fluoroquinolone Resistance Has Shaped the Evolution of Escherichia coli ST131

UNLABELLED Escherichia coli ST131 is the most frequently isolated fluoroquinolone-resistant (FQR) E. coli clone worldwide and a major cause of urinary tract and bloodstream infections. Although originally identified through its association with the CTX-M-15 extended-spectrum β-lactamase resistance gene, global genomic epidemiology studies have failed to resolve the geographical and temporal ori...

متن کامل

A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131.

BACKGROUND Escherichia coli O25b:H4-ST131 represents a predominant clone of multidrug-resistant uropathogens currently circulating worldwide in hospitals and the community. Urinary tract infections (UTIs) caused by E. coli ST131 are typically associated with limited treatment options and are often recurrent. METHODS Using established mouse models of acute and chronic UTI, we mapped the pathog...

متن کامل

Complete Genome Sequence of Escherichia coli 81009, a Representative of the Sequence Type 131 C1-M27 Clade with a Multidrug-Resistant Phenotype

The sequence type 131 (ST131)-H30 clone is responsible for a significant proportion of multidrug-resistant extraintestinal Escherichia coli infections. Recently, the C1-M27 clade of ST131-H30, associated with blaCTX-M-27, has emerged. The complete genome sequence of E. coli isolate 81009 belonging to this clone, previously used during the development of ST131-specific monoclonal antibodies, is ...

متن کامل

Molecular Characterization of a Multidrug Resistance IncF Plasmid from the Globally Disseminated Escherichia coli ST131 Clone

Escherichia coli sequence type 131 (E. coli ST131) is a recently emerged and globally disseminated multidrug resistant clone associated with urinary tract and bloodstream infections. Plasmids represent a major vehicle for the carriage of antibiotic resistance genes in E. coli ST131. In this study, we determined the complete sequence and performed a comprehensive annotation of pEC958, an IncF pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017